The mammalian Golgi apparatus is characterized by a ribbon-like organization adjacent to the centrosome during interphase and extensive fragmentation and dispersal away
نویسندگان
چکیده
Correspondence to Christine Sütterlin: [email protected]; or Antonino Colanzi: [email protected] Abbreviation used in this paper: -TuRC, -tubulin ring complex. Introduction The Golgi apparatus plays a central role in the secretory pathway. Newly synthesized proteins are transported from the ER to the Golgi, where they are posttranslationally modified. They are sorted into carriers for delivery to the plasma membrane or the endosomal–lysosomal system. The basic structural unit of the Golgi apparatus is a stack of flattened cisternae that is morphologically conserved among most species. In mammalian cells, individual Golgi stacks are connected laterally to form a continuous membranous system called the Golgi ribbon, which is located in close physical proximity to the centrosome (Fig. 1, left). The centrosome functions as the major microtubuleorganizing center of the cell and plays an important role in cell polarization and ciliogenesis (Bettencourt-Dias and Glover, 2007). In a newly formed daughter cell, this nonmembranebound organelle is composed of a pair of centrioles that is surrounded by a cloud of electron-dense material called the pericentriolar matrix. -Tubulin ring complexes (-TuRCs) in the pericentriolar matrix allow the centrosome to nucleate the radial array of interphase microtubules whose minus ends are embedded in the centrosome and whose plus ends extend toward the cell periphery. After centrosome duplication in S phase, the two centrosomes move to opposite poles of the cell and become the spindle poles from which spindle microtubules grow. Centrosomes are generally located in the cell center close to the nucleus, although this central position is lost in response to a polarization stimulus, which prompts centrosomes to reorient toward the leading edge of the cell (Pouthas et al., 2008). In most cell types, centrosome reorientation is critical for the ability of cells to polarize and migrate (Yvon et al., 2002). The centrosome is also linked to ciliogenesis because one of its centrioles is converted into the basal body from which a primary cilium extends (D’Angelo and Franco, 2009). The spatial relationship between the Golgi apparatus and the centrosome is altered by changes in Golgi organization that occur during the cell cycle (Fig. 1). These two organelles are only adjacent in interphase when the Golgi apparatus is arranged as a ribbon in the pericentriolar region (Colanzi et al., 2003). In contrast, Golgi membranes are fragmented and dispersed throughout the cytoplasm during mitosis. Intriguingly, the pericentriolar localization of the Golgi is a feature typical of some eukaryotic cells, ranging from mammalian and amphibian cells (Thyberg and Moskalewski, 1999; Reilein et al., 2003) to amoeba (Rehberg et al., 2005). However, other eukaryotes, including plants and flies, have isolated Golgi stacks (Stanley et al., 1997; Nebenführ and Staehelin, 2001) or isolated cisternae The mammalian Golgi apparatus is characterized by a ribbon-like organization adjacent to the centrosome during interphase and extensive fragmentation and dispersal away from the centrosome during mitosis. It is not clear whether this dynamic association between the Golgi and centrosome is of functional significance. We discuss recent findings indicating that the Golgi–centrosome relationship may be important for directional protein transport and centrosome positioning, which are both required for cell polarization. We also summarize our current knowledge of the link between Golgi organization and cell cycle progression. The Golgi and the centrosome: building a functional partnership
منابع مشابه
The Golgi and the centrosome: building a functional partnership
The mammalian Golgi apparatus is characterized by a ribbon-like organization adjacent to the centrosome during interphase and extensive fragmentation and dispersal away from the centrosome during mitosis. It is not clear whether this dynamic association between the Golgi and centrosome is of functional significance. We discuss recent findings indicating that the Golgi-centrosome relationship ma...
متن کاملDisconnecting the Golgi ribbon from the centrosome prevents directional cell migration and ciliogenesis
Mammalian cells exhibit a frequent pericentrosomal Golgi ribbon organization. In this paper, we show that two AKAP450 N-terminal fragments, both containing the Golgi-binding GM130-interacting domain of AKAP450, dissociated endogenous AKAP450 from the Golgi and inhibited microtubule (MT) nucleation at the Golgi without interfering with centrosomal activity. These two fragments had, however, stri...
متن کاملGMAP-210 Recruits γ-Tubulin Complexes to cis-Golgi Membranes and Is Required for Golgi Ribbon Formation
Mammalian cells concentrate Golgi membranes around the centrosome in a microtubule-dependent manner. The mechanisms involved in generating a single Golgi ribbon in the periphery of the centrosome remain unknown. Here we show that GMAP-210, a cis-Golgi microtubule binding protein, recruits gamma-tubulin-containing complexes to Golgi membranes even in conditions where microtubule polymerization i...
متن کاملThe centrosome–Golgi apparatus nexus
A shared feature among all microtubule (MT)-dependent processes is the requirement for MTs to be organized in arrays of defined geometry. At a fundamental level, this is achieved by precisely controlling the timing and localization of the nucleation events that give rise to new MTs. To this end, MT nucleation is restricted to specific subcellular sites called MT-organizing centres. The primary ...
متن کاملAurora-A recruitment and centrosomal maturation are regulated by a Golgi-activated pool of Src during G2
The Golgi apparatus is composed of stacks of cisternae laterally connected by tubules to form a ribbon-like structure. At the onset of mitosis, the Golgi ribbon is broken down into discrete stacks, which then undergo further fragmentation. This ribbon cleavage is required for G2/M transition, which thus indicates that a 'Golgi mitotic checkpoint' couples Golgi inheritance with cell cycle transi...
متن کامل